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Abstract: - A linear discrete stable control system is considered. The Power Factor Correction (PFC) converter to allow independent control of current and voltage. It converter are fast and slow states to inheres sty present 
small parameters inductor and capacitor its computes stiffness and to include switching ripple effects. As an 
alternative a Singular Perturbation Method (SPM) is presented Boundary Value Problem (BVP) and Optimal 
Problem. It is applied to two state switching power converters to provide rigorous justification of\ the time scale 
separation. It is modeled as a one parameter singularly perturbed system. SPM consists of an outer series solution 
and one boundary layer correction (BLC) solution. A boundary layer correction is required to recover the initial 
conditions lost in the process of degeneration and to improve the solution. SPM is carried out up to second-order 
approximate solution for the PFC converter model for BVP and optimal control problems. The results are 
compared with the exact solution (between with and without parameters). The results substantiate the 
application. 
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1 Introduction 
The singularly perturbed systems are ill-

conditioned systems with computational stiffness. 
Hence exact solution of these systems requires 
special numerical methods to overcome this stiffness. 
The SPM removes the stiffness of the system, 
reduces the order of the system and satisfies all the 
specified boundary conditions thereby giving a 
solution very close to the exact solution. The 
singularly perturbed systems are time-scale systems. 
A two-time scale system results in one parameter 
singularly perturbed system. A three-time scale 
system results in a two parameter singularly 
perturbed system. Similarly a Multi Time Scale 
(MTS) system results in n parameter singularly 
perturbed system. MTS systems are highly stiff 
exhibiting chaotic behavior with butterfly 
phenomenon. Obviously these systems need an 
alternative. The alternative is SPM. The singular 
perturbation theory is well developed for continuous-
time control systems [1-10] compared to discrete-
time control systems [11-20]. Chaos associated with 
multiple time-scales exhibiting butterfly phenomenon 
[21] creates hurdles for finding the solution. 

Conventional wisdom in power electronics is 
that in DC–DC converters and many other 
applications, inductor currents are “fast” state 
variables, while capacitor voltages are “slow” state 

variables. Often, this is used as justification for a 
particular design methodology or control scheme as 
singular perturbation method. As power conversion 
densities increase, switching frequencies increase, 
control bandwidths increase, and components are 
miniaturized, a designer should wonder whether the 
conventional wisdom is still valid. Frequently, 
controllers for DC–DC converters use two loops: an 
inner current loop and an outer voltage loop. The 
current loop can take many forms. If there is a 
separation in timescales between the current 
dynamics and voltage dynamics, the two loops can be 
designed independently.  

While timescale separation, removes the 
stiffness of the system and reduces the order of the 
system are important for many DC–DC converters, 
power factor correction converters require singular 
perturbation method for proper operation. The 
objective of a PFC converter is to force an inductor 
current to follow the input voltage wave shape 
(normally a rectified sinusoid), while the output 
capacitor voltage is as close to dc as possible [29]. 
The typical solution is to use a large output capacitor 
to smooth out the power fluctuations from the input. 
Hence, reduce error between with separation and 
without separation by SPM. 

Here a singular perturbation theory for DC–
DC Converters and application to PFC Converters 
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with two time scales is considered as a case study. It 
is modeled as a one parameter SPS then IVP, BVP 
and optimal problems are studied using the SPM 
extended up to second-order approximation  

Singular perturbation theory [28] is a tool for 
formally partitioning a dynamic system into slow and 
fast variables. The two timescales differ in scale by a 
small parameterε. The fast variables, denoted here as 
x1, are related to the slow variables, denoted as x0, 
by an integral manifold (an algebraic relation) plus a 
small dynamic error parameter ε.  

2. Singular Perturbation Method 
I. Discrete  Multi-Parameter  Problem 

 The multi-parameter discrete control systems are 
being studied extensively. From control view here we 
present the Discrete Multi-Parameter Singular 
Perturbation Method (DMPSPM) in state space form. 
Consider the linear, singularly perturbed multi-
parameter discrete control system. This can be 
represented as 

xj(k+1) = A [μ0…	μ j		x୨ሺkሻ] + B u(k)       (1a)                                                

xj(k+1) = A [ε0…εj		x୨ሺkሻ] + B u(k)      (1b)                                                 

	x୨ሺk ൌ 0ሻ ൌ 	 x୨(0),  j = 0, 1, …, n. 

where A=  ൦

Aଵଵ Aଵଶ … Aଵ୫
Aଶଵ Aଶଶ … Aଶ୫
⋮

A୫ଵ
⋮

A୫ଶ
⋮ ⋮

… A୫୫

൪,	 B = ൦

Bଵ
Bଶ
⋮
B୫

൪ 

and state vector		x୨ିଵ	ሺkሻ ∈ R
୬ౠ,  j=1, 2, …, m; m 

= n+1. Aij and Bi are matrices of suitable 
dimensionality. The control vector free of the small 
parameters is u(k)∈ R୰ . Redefined the parameters as 

εଵ ൌ μଵand	ε୨ ൌ
ஜౠ
ஜౠషభ

 , j ൌ 2,… , n. The parameter 

ε଴	 ൌ μ଴,			εଵ		is not a small parameter and is 
introduced to facilitate the presentation of the multi-
parameter problem. The initial conditions of the 
system (1b) are  

x୨ሺk ൌ 0ሻ ൌ 	 x୨(0), j = 0, 1, …, n.                  (1c)                                           

The (n1+n2+…+nm) order discrete TPBVP 
represented by (1) is said to be in singularly 
perturbed form based on the degenerate TPBVP 

ቈ
x଴
଴…଴ሺk ൅ 1ሻ
x୨
଴…଴ሺk ൅ 1ሻ

቉ ൌ A	 ൤x଴
଴…଴ሺkሻ
0

൨ ൅ 	B	uሺkሻ,    

                              j = 1, 2, …, n.                          (2a)                                                                            

obtained by suppressing the small parameters 
εଵ, εଶ, … , ε୬ in (2a) is of order n1 and can satisfy the 
boundary conditions of slow modes only, resulting in              

x଴
଴଴…଴ሺk ൌ 0ሻ ൌ x଴ሺ0ሻ	and		x୨

଴଴…଴ሺk ൌ 0ሻ ് x୨ሺ0ሻ,  
                      j = 1, 2,…, n.                                    (2b)                   

The (n2+…+nm) initial condition missing in the 
process of degeneration are restored by the following 
singular perturbation method. 

II. Singular  Perturbation  Method (SPM) 
1. Boundary value problems (BVP)  

(a).Outer solution 
 Asymptotic expansions for the outer solution are 

expressed in terms of the small parameters as 

൛x୴,୭ሺkሻൟ=∑ ሾx୴
୧୨…୰୯

୧,୨,…,୰ஹ଴ ሺkሻሿεଵ
୧ εଶ
୨ … ε୬୰ ,   

                           v = 0, 1, …, n.                               (3)                   
for qth order of approximation. By substituting (3) 

in (1b) and equating like powers of the small 
parameter a set of equations may be obtained. (2a) is 
the resulting zero-order equation. We can get 
equations may be obtained for n≥3.  

(b). Boundary layer correction (BLC) solutions 
 In order to get back the boundary conditions lost 

due to degeneration, to supply the required boundary 
conditions to solve the outer and BLC equations and 
to get a distinctive solution, the following 
transformations need to be applied for the n boundary 
layer corrections. 
Transformations for BLC:  
	x଴ୡ୧ሺkሻ ൌ 	 x଴ሺkሻ/ሺεଵ. . . ε୧ሻ୩ାଵ, i=1, 2…, n;                                   
	xଵୡଵሺkሻ ൌ 	 xଵሺkሻ/ሺεଵሻ୩ ;                                               
	xଵୡ୧ሺkሻ ൌ 	 xଵሺkሻ/ሺεଵ

୩ሺεଶ … ε୧ሻ୩ାଵሻ,	i=2, 3, …, n. 
	xଶୡ୧ሺkሻ ൌ 	 xଶሺkሻ/ሺεଵ … ε୧ሻ୩, i=1, 2; 
	xଶୡ୧ሺkሻ ൌ 	 xଶሺkሻ/ሺሺεଵεଶሻ୩ሺεଷ … ε୧ሻ୩ାଵሻ	,i=3,..., n; 

     …                     … 
	x୬ୡ୧ሺkሻ ൌ 	 x୬ሺkሻ/ሺεଵ … ε୧ሻ୩,i=1,2,…,n.           (4)                    
Here suffix c refers to initial boundary layer 

correction.  
BLC Equations: 

 BLC equations may be obtained by seeking 
asymptotic expansions for n initial BLC as   

 ሼx୴ୡୱሺkሻሽ= ∑ ቄx୴ୡୱ
୧୨…୰ሺkሻቅ୯

୧୨…୰ஹ଴ εଵ
୧ εଶ
୨ … ε୬୰ ;	   

                                 v = 0, 1, … n. s = 1, 2, …, n.  (5)                   
for qth order of approximation. By substituting (5) 

in (4) and collecting the coefficients of like powers of 
the small parameters	εଵ, 	εଶ, … , ε୬;		a set of 
subsystems for BLC may be obtained. 

 (c). Total series solution (TSS) 
  For a desired order of approximation q, the total 

series solution of states x(k) may be obtained from 
outer and BLC solutions as  
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	x଴
୯ሺkሻ

ൌ ෍ ሼx଴
୧୨…୰ሺkሻൟεଵ	

୧ εଶ
୨ … ε୬୰

୯

୧,୨,…,୰ஹ଴

൅෍ ሺεଵ … εୱሻ୩ାଵ
୬

ୱୀଵ
෍ ൛x଴ୡୱ

୧୨…୰ሺkሻൟεଵ	
୧ εଶ

୨ … ε୬୰
୯

୧,୨,…,୰ஹ଴
 

	x୤
୯ሺkሻ

ൌ 	 ෍ ൛x୤
୧୨…୰ሺkሻൟ

୯

୧,୨,…,୰ஹ଴

εଵ	
୧ εଶ

୨ … ε୬୰

൅෍ ሺεଵ … εୱሻ୩
୤

ୱୀଵ
෍ ൛x୤ୡୱ

୧୨…୰ሺkሻൟεଵ	
୧ εଶ

୨ … ε୬୰
୯

୧,୨,…,୰ஹ଴

൅෍ ሺεଵ … ε୤ሻ୩
୬

ୱୀ୤ାଵ
ሺε୤ାଵ … εୱሻ୩ାଵ 

∗ ∑ ൛x୤ୡୱ
୧୨…୰ሺkሻൟεଵ	

୧ εଶ
୨ … ε୬୰

୯
୧,୨,…,୰ஹ଴ 			f=1,2,…,n. (6)                                                                        

 Here terms with negative power for singular 
perturbation parameters		ε୧ are defined to be zero, if 
any. 

(d). Boundary conditions  
 The boundary conditions to solve outer equations 

(2a, 3) and BLC equation are to be provided in 
advance. These are determined uniquely from the 
fact that the total series solution (6) should satisfy the 
specified boundary conditions (1c). Consequently the 
following boundary conditions result [18-20].  

 (e). Algorithm 
The algorithm is similar to other SPM [20]. First 

start with zero-order solution to improve the 
degenerate solution. Here Outer and BLC solutions 
to be found using outer and BLC equations and 
conditions (5, 6).Then added according to TSS to get 
the zero-order solution. Similar procedure to be 
followed for first and higher order approximate 
solutions for further improvement.    

2.  Optimal control problems  

i. Problem Statement 
Consider the linear, time-invariant, completely 

controllable singularly perturbed multi-parameter 
discrete control system (1). The performance index to 
be minimized is 

J=1/2∑ ሾwᇱሺkሻDwሺkሻ ൅	uᇱሺkሻRuሺkሻሿ୒ିଵ
୩ୀ଴ 															(8)                               

where w(k) = [ε଴ …ε୨	x୨ሺkሻሿ. ′ indicates transpose. D 
is a real positive-semidefinite symmetric matrix of 

order (n1+n2+…+nm) x (n1+n2+…+nm). R is real 
positive-definite symmetric matrix of order (r x 
rሻ	and N is a fixed integer indicating the terminal 
(final) time. Here note that the states are incorporated 
in an appropriate manner to bring the resulting 
TPBVP into singularly perturbed form. The 
Hamiltonian of the problem is  

										Hሺkሻ ൌ 	
1
2
wᇱሺkሻDwሺkሻ ൅

1
2
uᇱሺkሻRuሺkሻ

൅	pᇱሺk ൅ 	1ሻሾA	wሺkሻ ൅ B	uሺkሻሿ 
where the co-state vector  p(k) = ൣε଴ … ε୨	p୨ሺkሻ൧ 
Using the results of digital optimal control theory 
[22-25] 

∂Hሺkሻ/ሺ∂ε଴ …ε୨	p୨ሺk ൅ 1ሻ ൌ x୨ሺk ൅ 1ሻ 
பୌሺ୩ሻ

ப୶ౠሺ୩ሻ
ൌ 	 ε଴ …ε୨	p୨ሺkሻ 

பୌሺ୩ሻ

ப୳ሺ୩ሻ
ൌ 0			                                                 (9)                    

Form (1) and (9), the states and co-states are obtained 
as 

ቈ
x୨ሺk ൅ 1ሻ
p୨ሺkሻ

቉ =Cቈ
ε଴ … ε୨x୨ሺkሻ

ε଴ … ε୨p୨ሺk ൅ 1ሻ቉									(10a)     

whereC = 

ۏ
ێ
ێ
ێ
ێ
Aଵଵۍ …Aଵ୫...

Eଵଵ …Eଵ୫..

Aଶଵ …A୫୫ Eଵ୫
ᇱ …E୫୫

Dଵଵ
Dଵ୫
ᇱ

…Dଵ୫...
…D୫୫

Aଵଵ
ᇱ …A୫ଵ

ᇱ

Aଵ୫
ᇱ …A୫୫ᇱ

ے
ۑ
ۑ
ۑ
ۑ
ې

 

E୧୨ ൌ 	െB୧RିଵB୨
ᇱ	,	 i = 1, 2, …, m; j = 1, 2, …, m. 

The final conditions of the system (10a) are  

           pi(N)= 0, i = 0, 1, …, n.                (10b)                                

The optimal control is obtained as  

uq(k) = -R-1∑ ሾB୨ାଵ
ᇱ୬

୨ୀ଴ ε଴εଵ … ε୨p୨
୯ି୨(k+1)],                       

                       j=0,1,…,n.                            (10c)                     
The set of equations (10) constitutes the open-loop 
optimal control problem. The 2(n1+n2+…+nm)th 
order discrete TPBVP represented by (10) is in the 
singularly perturbed form in the sense that the 
degenerate TPBVP 

ۏ
ێ
ێ
ێ
x଴ۍ
଴…଴ሺk ൅ 1ሻ
x୨
଴…଴ሺk ൅ 1ሻ

p଴
଴…଴ሺkሻ
p୨
଴…଴ሺkሻ ے

ۑ
ۑ
ۑ
ې

ൌ C	 ൦

x଴
଴…଴ሺkሻ
0

p଴
଴…଴ሺk ൅ 1ሻ

0

൪,	j = 1, 2, …, n.                   

                                                                               (11)                   
obtained by suppressing the small parameters 
εଵ, εଶ, … , ε୬ in (10a) is of order 2n1and can satisfy 
the boundary conditions 
x଴
଴଴…଴ሺk ൌ 0ሻ ൌ x଴ሺ0ሻ	and	p଴

଴଴…଴ሺk ൌ Nሻ ൌ 	p଴ሺNሻ 
                                                                            (12)                     
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The other boundary conditions, in general, are 

x୨
଴଴…଴ሺk ൌ 0ሻ ് x୨ሺ0ሻ	and		p୨

଴଴…଴ሺk ൌ Nሻ ് p୨ሺNሻ, 

                 j = 1, 2, …, n.                                (13) 

That is the boundary 
conditions	xଵሺ0ሻ, … , x୬ሺ0ሻ	and	pଵሺNሻ, … , p୬ሺNሻ are 
lost in the process of degeneration and the loss of 
these boundary conditions contributes to the 
existence of boundary layers at initial and terminal 
points. The 2(n2+…+nm) boundary conditions lost in 
the process of degeneration are recovered by the 
following singular method which gives an 
approximate solution to the stiff TPBVP represented 
by (10). Consequently it results in a suboptimal 
control. 

ii. Singular perturbation method of optimal control  

(a). Outer series 
       Let us assume asymptotic expansions for the 
outer solution in the small parameters as 
൛x୴,୭ሺkሻ, p୴,୭ሺkሻൟ=
∑ ሾx୴

୧୨…୰୯
୧,୨,…,୰ஹ଴ ሺkሻ, p୴

୧୨…୰ሺkሻሿεଵ
୧ εଶ
୨ … ε୬୰ ;	v=0, 1, …, n.                                        

                                                                              (14) 
where q is the desired order of approximation. 
Substituting (14) in (10a) and equating like powers of 
the small parameter a set of equations may be 
obtained. The zero-order equation is the same as that 
given by (11). The following equations may be 
obtained for n≥3. 

 (b). Initial and terminal boundary- layer correction 
series 
Transformations: 
In order to recover the boundary conditions lost in 
the process of degeneration and to provide the 
necessary data for solving the outer and BLC 
equations, we introduce the following 
transformations corresponding to the 2n boundary 
layer corrections (n initial and n terminal) that give 
unique solution as 
Transformations for Initial BLC: 
		x଴ୡ୧ሺkሻ ൌ 	 x଴ሺkሻ/ሺεଵ. . . ε୧ሻ୩ାଵ, i =1,2, …,n. 
		xଵୡଵሺkሻ ൌ 	 xଵሺkሻ/ሺεଵሻ୩ 
		xଵୡ୧ሺkሻ ൌ 	 xଵሺkሻ/ሺεଵ

୩ሺεଶ … ε୧ሻ୩ାଵሻ,	i =2, 3, …, n. 
		xଶୡ୧ሺkሻ ൌ 	 xଶሺkሻ/ሺεଵ … ε୧ሻ୩, i =1,2. 
		xଶୡ୧ሺkሻ ൌ 	 xଶሺkሻ/ሺሺεଵεଶሻ୩ሺεଷ … ε୧ሻ୩ାଵሻ	, 
                                                         i =3, 4, …, n. 
…                     … 
		x୬ୡ୧ሺkሻ ൌ 	 x୬ሺkሻ/ሺεଵ … ε୧ሻ୩, i =1,2,…,n. 
		x୨୲୧ሺkሻ ൌ 	 x୨ሺkሻ/ሺεଵ. . . ε୧ሻ୒ି୩ାଵ, j=0,1,2,…,n; 
                                       i =1,2,…,n.                    (15a) 
Transformations for Terminal BLC: 

		p୨ୡ୧ሺkሻ ൌ
୮ౠሺ୩ሻ

ሺகభ...க౟ሻౡశభ
,	i =1,2, …,n; j=1,2, …, n. 

		p଴୲୧ሺkሻ ൌ 	p଴ሺkሻ/ሺεଵ. . . ε୧ሻ୒ି୩ାଵ, i =1,2, …,n. 
		pଵ୲ଵሺkሻ ൌ 	pଵሺkሻ/ሺεଵሻ୒ି୩. 

		pଵ୲୧ሺkሻ ൌ 	pଵሺkሻ/ሺεଵ
୒ି୩൫εଶ … ε୧൯

୒ି୩ାଵ
ሻ,	i=1,2,…,n. 

		pଶ୲୧ሺkሻ ൌ 	pଶሺkሻ/ሺεଵ. . . ε୧ሻ୒ି୩, i =1,2. 

		pଶ୲୧ሺkሻ ൌ 	pଶሺkሻ/ሺሺεଵεଶሻ୒ି୩൫εଷ … ε୧൯
୒ି୩ାଵ

ሻ, 
                                                             i =3,4,…,n. 
…                     … 
		p୬୲୧ሺkሻ ൌ 	p୬ሺkሻ/ሺεଵ. . . ε୧ሻ୒ି୩, i =1,2, …,n.    (15b)                    
Here suffixes c and t refer to initial and terminal 
boundary layer corrections respectively. 

(c). Total series solution  
For a desired order of approximation q, the 

total series solution of states x(k) and co-states p(k) 
may be obtained from outer and BLC solutions as 

൛	x଴
୯ሺkሻ, p଴

୯ሺkሻൟ

ൌ ෍ ቊx଴
୧୨…୰ሺkሻ, p଴

୧୨…୰ሺkሻቅ εଵ	
୧ εଶ

୨ … ε୬୰
୯

୧,୨,…,୰ஹ଴

൅		෍ ሺ	εଵ … εୱሻ୩ାଵ
୬

ୱୀଵ

∗෍ ቄx଴ୡୱ
୧୨…୰ሺkሻ, p଴ୡୱ

୧୨…୰ሺkሻቅ εଵ	
୧ εଶ

୨ … ε୬୰
୯

୧,୨,…,୰ஹ଴

൅	෍ ሺ	εଵ … ε୴ሻ୒ି୩ାଵ
୬

୴ୀଵ

∗෍ ቄx଴୲୴
୧୨…୰ሺkሻ, p଴୲୴

୧୨…୰ሺkሻቅ εଵ	
୧ εଶ

୨ … ε୬୰
୯

୧,୨,…,୰ஹ଴
 

x୤
୯ሺkሻ

ൌ 					 ෍ x୤
୧୨…୰ሺkሻ

୯

୧,୨,…,୰ஹ଴

εଵ	
୧ εଶ

୨ … ε୬୰

൅෍ ሺ	εଵ … εୱሻ୩
୤

ୱୀଵ
෍ x୤ୡୱ

୧୨…୰ሺkሻεଵ	
୧ εଶ

୨ … ε୬୰ ൅
୯

୧,୨,…,୰ஹ଴
 

∑ ሺ	εଵ … ε୤ሻ୩
୬
ୱୀ୤ାଵ ሺ	ε୤ାଵ … εୱሻ୩ାଵ ∗

∑ x୤ୡୱ
୧୨…୰ሺkሻεଵ	

୧ εଶ
୨ … ε୬୰ ൅

୯
୧,୨,…,୰ஹ଴

∑ ሺ	εଵ … ε୴ሻ୒ି୩ାଵ
୬
୴ୀଵ ∑ x୤୲୴

୧୨…୰ሺkሻεଵ	
୧ εଶ

୨ … ε୬୰
୯
୧,୨,…,୰ஹ଴  

    
  f = 1, 2, …, n. 
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p୤
୯ሺkሻ

ൌ 	 ෍ p୤
୧୨…୰ሺkሻ

୯

୧,୨,…,୰ஹ଴

εଵ	
୧ εଶ

୨ … ε୬୰

൅෍ ሺ	εଵ … εୱሻ୩ାଵ
୬

ୱୀଵ
෍ p୤ୡୱ

୧୨…୰ሺkሻεଵ	
୧ εଶ

୨ … ε୬୰ ൅
୯

୧,୨,…,୰ஹ଴
 

			෍ ሺ	εଵ … ε୴ሻ୒ି୩
୤

୴ୀଵ
෍ p୤୲୴

୧୨…୰ሺkሻεଵ	
୧ εଶ

୨ … ε୬୰
୯

୧,୨,…,୰ஹ଴

൅෍ ሺ	εଵ … ε୤ሻ୒ି୩ሺ	ε୤ାଵ … ε୴ሻ୒ି୩ାଵ
୬

୴ୀ୤ାଵ

∗෍ p୤୲୴
୧୨…୰ሺkሻεଵ	

୧ εଶ
୨ … ε୬୰ 	

୯

୧୨…୰ஹ଴
 

   
 f=1,2,…,n.                 (16)                                                        
Here terms with negative power for singular 
perturbation parameters	ε୧ are defined to be zero, if 
any.Now the suboptimal control law u(k) may be 
computed using (16) as 

 uq(k) = -R-1∑ ሾB୨ାଵ
ᇱ୬

୨ୀ଴ 	ε଴εଵ … ε୨p୨
୯ି୨(k+1)]   (17) 

Here q is the desired order of approximation. 

(d). Boundary conditions 
  The boundary conditions to solve outer 

equations (14) and BLC equations (15) are to be 
furnished a priori. These are fixed uniquely from the 
fact that the total series solution (16) should satisfy 
the specified boundary conditions (10b). 
Consequently the following boundary conditions 
result[]. 

 (e). Algorithm 
Algorithm is similar to the SPM of a TPBVP 

of discrete control systems (Case 2 problem [21]) as 
the formulation of this optimal control problem 
results in TPBVP. For a particular order of 
approximate solution, first find the outer solution for 
states and co-states. Then add the BLC 
corresponding to the least singular transformation. 
Continue this process and finally add the BLC 
corresponding to the most singular transformation. 
Once a particular order of solution is obtained for 
states and co-states using (16), then obtain the 
corresponding suboptimal control using (17) and 
asymptotic correctness. 

3. Boost Converter Analysis 
      The PFC boost converter shown in Fig. 1 can be 
modeled as a switched linear system.  

Fig. 1: Boost converter 

The PFC application, implies large variation in input 
voltage and inductor current; otherwise, the dynamics 
are identical to any other boost converter. The 
switched linear model is  
 
ୢ୴ి
ୢ୲

ൌ െ
ଵ

େሺୖାୖౙሻ
vେ ൅ Sୢ

ଵ

େሺୖାୖౙሻ
i୐  

 
ୢ୧ై
ୢ୲
ൌ െSୢ

ୖ

୐ሺୖାୖౙሻ
vେ െ

ୖైశୗౚሺୖୖై/ሺୖାୖైሻሻ

୐
i୐ ൅

୚౟౤
୐

                        

                                                                        (18) 
Here, Sd is the switching function of the diode. All 
variables and coefficients must be normalized to put 
the system into standard form. The nominal output 
voltage is V0, the nominal output current is I0 = V0/R, 
and the switching period is T. With these definitions, 
the other variables can be normalized on the basis 
 

ε ൌ
L
CRଶ

	 

w =	
୚౟౤
୚౥

 

δ ൌ
ୖై
ୖ

ሺୖାୖిሻ

ୖ
  

Sୢ ൌ 1 െ d ൌ u  

vොେ	= 
୚ి
୚ో

 

ıେ̂	=	
୧ై
୧ో	

 

p = 
୘

େሺୖిାୖሻ
 

t̂ ൌ
୘

େሺୖిାୖሻ
                                                          (19)                      

The first two variables are the normalized states. 
Normalized input voltage w is a disturbance input. 
The moving average of Sd, shown as u, is used as the 
input in the following analysis; often, the actual input 
is d, the duty cycle of the controlled switch. Then, the 
switching period T must be transformed into p on the 
t̂ timescale. The last two variables accumulate the 
various parameters of the physical system. The 
normalized switched dynamical system is 
 

	
ୢ

ୢ୲
൤
vොେ
ı୐̂
൨ =൥

െ1 Sୢ

െ
ୗౚ
க

െ
ஔାୗౚ

౎ి
౎

க

൩ ൤
vොୡ
ı୐̂
൨ ൅ ቈ

0
ୖిାୖ

கୖ
቉w       (20)                     
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Averaging can be applied to (20) to enable further 
analysis. Although singular perturbation theory may 
be applied to time-varying systems, the switching 
power converter results are more readily applied if 
the system is first converted to an equivalent time-
invariant system. Since Sd is a switching function, 
the model (20) is linear in the states but time-varying. 
State-space averaging [37], which removes all 
knowledge of switching frequency, is typically used 
to form a nonlinear time-invariant converter model. 
Other averaging methods retain switching 
information in time-invariant models. 

4. Sample Data Discrete Analysis 
      To study singular perturbation in digital controls, 
a sampled data model [30], [31] can be analyzed for 
timescale separation. Generic discrete-time systems 
have been analyzed with singular perturbation theory 
[32-36]. The boost converter of Fig. 1 demonstrates 
the basic problem of timescale separation with a 
digital control. First, the continuous-time model of 
(20) needs to be converted to discrete time. For 
notational convenience, rewrite the continuous-time 
model as 

xሶ ሺtሻ ൌ Fxሺtሻ ൅ Guሺtሻ                                            (21)                                   

Where F and G are respectively m x m and m x p real 
constant matrices with initial time is t଴ and sampling 
time is t. 

x(t) = e୊ሺ୲ି୲଴ሻ x(t଴) + ׬ e୊ሺ୲ିதሻ
୲
୲బ

 Gu(τ )dτ          (22a)                            

In our case the input is sampled so we shall establish 
the solution going from one sampling instant t଴=kT 
to the next sampling instant t= (k+1) T. 

 x(t) = e୊ሺ୲ି୩୘ሻ x(kT) + ׬ e୊ሺ୲ିதሻ
୲
୩୘  Gu(τ )dτ;            

                kT൑ t ൏ ሺ݇ ൅ 1ሻܶ                              (22b) 

If we are interested in response at the sampling 
instants only, we set t= (k+1)T. In response to u(k), 
the state settles to the value x(k+1) prior to the 
application of input u(k+1). 

        x(k+1) = A [x(k)] + B u(k)                            (23)                                                

                       where A=	e୊୘    

                                  B= ׬ e୊ሺሺ୩ାଵሻ୘ିதሻ
ሺ୩ାଵሻ୘
୩୘  G dτ 

   B= ׬ e୊ሺሺ୩୘ା୘ିதሻ
ሺ୩ାଵሻ୘
୩୘  G dτ                           (24a)                                      

Letting μ ൌ ሺτ െ kTሻ in (24a), we have  

   B= ׬ e୊ሺ୘ିஜሻ
୘
଴  G dμ with θ ൌ T െ μ 

We get  

   B= ׬ e୊஘
୘
଴  G dθ                                               (24b)                                 

If we are interested in the value of x(k) between 
sampling instants, we first solve for x(kT) any k 

using state above equation and then use (24) x(t) to 
determine x(t) for kT	൑ t ൏ ሺk ൅ 1ሻT. 
Algorithm for evaluation of matrix series: 
We evaluate A by a series in the form 

A= e୊୘ ൌ I+FT (I+
୊୘

ଶ
ቄI ൅

୊୘

ଷ
ቂI ൅ ⋯൅

୊୘

୒ିଵ
ቀI ൅

																				
୊୘

୒
ቁቃ… ቅ)                                            (25a) 

which has better numerical properties than the direct 
series of powers. The empirical relation giving the 
number of terms N is  

                  N=minሼ3	!! FT	!! ൅ 6, 100ሽ              (25b)                    

This relation assures that no more than 100 terms are 
included. The B integral in (24b) can be evaluated 
term by term to give 

           B=∑
୊౟୘౟శభ

ሺ୧ାଵሻ!
ஶ
୒ୀ଴ G                                     (26a)                     

              B= (I+
୊୘

ଶ!
+ 
୊మ୘మ

ଷ!
+…)TG 

              B= ሺe୊୘-1)	FିଵG                                  (26b)                     

The transition (26) is possible only for a nonsingular 
matrix F. For a singular F, we may evaluate B from 
(26a) by the approximation technique described 
above. 

5.  Application to A PFC Converter 
      PFC boost converters rely on timescale 
separation for effective operation. The boost 
converter parameter has 657uH of line inductance 
(L), 77uF of output capacitance (C), 584m ohm of 
line resistance (RL), 381m ohm of capacitor output 
resistance (RC), 100 ohm of output resistance (R) 
and switches at 25 kHz. Switching period (Sampling 
time) T=0.7msec [37]. The resulting system is given 
by 

൤
x଴ሺk ൅ 1ሻ
xଵሺk ൅ 1ሻ

൨=ቂ 0.9993 0.0002
െ0.2471 0.0538

ቃ ൤
x଴ሺkሻ
xଵሺkሻ

൨+ቂ 0
3.9612

ቃu(k)

                                                           (27a) 
Here x଴	slow state variable, xଵ	fast state variable and 
u(k) is unit step control function. The eigen spectrum 
of this system  

 ሺ0.9992, 0.0539) 
clearly indicates two-time-scale nature with one slow 
mode and one fast mode. Hence it is represented as a 
one-parameter system as shown below.   

൤
x଴ሺk ൅ 1ሻ
xଵሺk ൅ 1ሻ

൨=ቂ 0.9993 0.002
െ0.2471 0.538

ቃ ൤
x଴ሺkሻ
εxଵሺkሻ

൨+ቂ 0
3.9612

ቃu(k)                      

                                                                   (27b)  
where	ε	= 0.1.           
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BVP: 
x0(10)=2, x1(0)=1, This is TPBVP as x0 is specified 
at k =10 and x1 is specified at initial point (k=0). 
     The solutions for zero, first, second-order 
approximations are obtained and compared with the 
exact solution as shown in the Table I for BVP. From 
these tables we observe that 
 The degenerate solution, obtained by making 

ε	equal to zero in (27a), is unable to satisfy 
the initial conditions x1(0). 

 The zero-order solution, obtained from (6), 
incorporates BLCs and hence it recovers the 
initial conditions x1(0). Thereafter, i.e., k ≥ 
1, it remains equal to the degenerate solution.   

 The first-order solution improves the zero-
order solution and is closer to the exact 
solution. 

 The second-order solution improves the first-
order solution and is much closer to the exact 
solution.  

 Boundary layer (region of rapid transition) is 
formed at k = 0 for x1 (the change from 
exact to degenerate solution is 1 to -0.4980. 

 
Optimal Problem: 
The initial conditions are given as 
x0(0) =1;    x1(0) = 1.                                          (28a)                                                                                     
 
and the final conditions are  
p0(7) =0;    p1(7) = 0.                                          (28b)                                                                                         
 
and the performance index  
J = ½ ∑ ሾwᇱሺkሻDWሺkሻ ൅ uᇱሺkሻRuሺkሻሿ୒ିଵ

୩ୀ଴           (29a)                                                                   
                             

where R = 1, D =ቂ1 0
0 1

ቃ,   w(k) = ൤
x଴ሺkሻ
εxଵሺkሻ

൨									(29b) 

The singularly perturbed TPBVP of fourth-order 
corresponding to () is  

ۏ
ێ
ێ
ۍ
x଴ሺk ൅ 1ሻ
xଵሺk ൅ 1ሻ
p଴ሺkሻ
pଵሺkሻ ے

ۑ
ۑ
ې
=

൦

0.9993 0.002 0 0
െ0.2471

1
0

0.538
0
10

0
0.9993
0.0002

െ31.382
െ2.4700
0.5380

൪

ۏ
ێ
ێ
ۍ
x଴ሺk ൅ 1ሻ
εxଵሺk ൅ 1ሻ
p଴ሺkሻ
εpଵሺkሻ ے

ۑ
ۑ
ې
      

                                                                       (30)                                     
 
      Using the singular perturbation method 
developed in the previous section, the degenerate, 
zero, first and second-order solutions are evaluated 
and compared with the exact solution in Table III. 
Observations from this table are 

 The degenerate solution, obtained by making 
ε equal to zero in (30), is unable to satisfy the 
boundary conditions of fast state and co-state 
specified as x1(0) = 1 and p1(7) = 0. 

 The zero-order solution, obtained from (16), 
incorporates BLCs and recovers these 
boundary conditions x1(0) and p1(7).   

 The first-order solution improves the zero-
order solution. The second-order solution 
improves the first-order solution and is much 
closer to the exact solution. 

The exact solution of the fourth-order singularly 
perturbed discrete TPBVP given by (30) is obtained 
by the method of complementary functions suggested 
for continuous ‘stiff’ problems. This necessitates a 
numerical algorithm to be implemented on a digital 
computer. On the other hand, by using the present 
SPM, the various series solutions are easily obtained 
as the stiffness is removed and at the same time are 
very close to the exact solution. Thus it is seen that 
the singular perturbation method not only reduces the 
order but also removes the ‘stiffness’ of the problem. 
This can be evidenced from the eigenvalues of full 
and degenerate optimal control systems. 

Eigenvalues of full optimal control system  

= {151.1324;    0.9993;    1.0007;    0.0066} 

Eigenvalues of degenerate optimal control system 

= {1.0007;    0.9993} 
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Table I: Comparison of various series solutions with the exact solution for BVP 

x(k) 
Degenerate  

Solution 

Zero 
Order 

Solution 

First 
Order 

Solution 

Second 
Order 

Solution 

Exact 
Solution 

x1(0) 

x2(0) 

2.0141 

-0.4980 

2.0141 

1.0000 

2.0134 

1.0000 

2.0104 

1.0000 

2.0073 

1.0000 

x1(1) 

x2(1) 

2.0126 

3.4635 

2.0126 

3.4635 

2.0120 

3.4691 

2.0097 

3.4936 

2.0061 

3.5190 

x1(2) 

x2(2) 

2.0112 

3.4639 

2.0112 

3.4639 

2.0107 

3.4827 

2.0082 

3.5927 

2.0054 

3.6548 

x1(3) 

x2(3) 

2.0098 

3.4642 

2.0098 

3.4642 

2.0093 

3.4830 

2.0075 

3.5931 

2.0047 

3.6623 

x1(4) 

x2(4) 

2.0084 

3.4646 

2.0084 

3.4646 

2.0080 

3.4833 

2.0063 

3.5934 

2.0040 

3.6629 

x1(5) 

x2(5) 

2.0070 

3.4649 

2.0070 

3.4649 

2.0067 

3.4837 

2.0051 

3.5938 

2.0033 

3.6631 

x1(6) 

x2(6) 

2.0056 

3.4653 

2.0056 

3.4653 

2.0053 

3.4840 

2.0047 

3.5941 

2.0027 

3.6632 

x1(7) 

x2(7) 

2.0042 

3.4656 

2.0042 

3.4656 

2.0040 

3.4843 

2.0034 

3.5944 

2.0020 

3.6634 

x1(8) 

x2(8) 

2.0028 

3.4660 

2.0028 

3.4660 

2.0027 

3.4847 

2.0021 

3.5948 

2.0013 

3.6636 

x1(9) 

x2(9) 

2.0014 

3.4663 

2.0014 

3.4663 

2.0013 

3.4850 

2.0009 

3.5951 

2.0007 

3.6638 

x1(10) 

x2(10) 

2.0000 

3.4667 

2.0000 

3.4667 

2.0000 

3.4853 

2.0000 

3.5954 

2.0000 

3.6639 
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Table II: Comparison of various series solutions with the optimal solution for optimal 

x(k) 
Degenerate  

Solution 
Zero Order 

Solution 
First Order 

Solution 

Second 
Order 

Solution 

Exact 
Solution 

x1(0) 

x2(0) 

p1(0) 

p2(0) 

u(0) 

1.0000 

-0.2473 

6.9707 

0.0012 

0.0000 

1.0000 

1.0000 

6.9707 

0.0012 

0.0000 

1.0000 

1.0000 

6.9732 

0.0959 

-7.8892e-04 

1.0000 

1.0000 

6.9766 

0.1852 

0.0152 

1.0000 

1.0000 

6.9797 

0.2009 

0.0227 

x1(1) 

x2(1) 

p1(1) 

p2(1) 

u(1) 

0.9993 

-0.2471 

5.9749 

9.9581e-04 

0.0000 

0.9993 

-0.2471 

5.9749 

9.9581e-04 

0.0000 

0.9993 

-0.2126 

5.9774 

-0.0192 

-6.3114e-04 

0.9993 

-0.1710 

5.9801 

-0.0249 

0.0134 

0.9993 

-0.1465 

5.9825 

-0.0286 

0.0239 

x1(2) 

x2(2) 

p1(2) 

p2(2) 

u(2) 

0.9986 

-0.2469 

4.9790 

7.9665e-04 

0.0000 

0.9986 

-0.2469 

4.9790 

7.9665e-04 

0.0000 

0.9986 

-0.2119 

4.9811 

-0.0169 

-4.7335e-04 

0.9986 

-0.1697 

4.9738 

-0.0235 

0.0105 

0.9986 

-0.1536 

4.9852 

-0.0302 

0.0241 

x1(3) 

x2(3) 

p1(3) 

p2(3) 

u(3) 

0.9979 

-0.2468 

3.9832 

5.9748e-04 

0.0000 

0.9979 

-0.2468 

3.9832 

5.9748e-04 

0.0000 

0.9979 

-0.2112 

3.9847 

-0.0132 

-3.1557e-04 

0.9979 

-0.1685 

3.9863 

-0.0215 

0.0083 

0.9979 

-0.1531 

3.9878 

-0.0304 

0.0242 

x1(4) 

x2(4) 

p1(4) 

p2(4) 

u(4) 

0.9972 

-0.2466 

2.9874 

3.9832e-04 

0.0000 

0.9972 

-0.2466 

2.9874 

3.9832e-04 

0.0000 

0.9972 

-0.2099 

2.9884 

-0.0105 

-1.5778e-04 

0.9972 

-0.1670 

2.9895 

-0.0206 

0.0081 

0.9972 

-0.1526 

2.9905 

-0.0305 

0.0242 
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x1(5) 

x2(5) 

p1(5) 

p2(5) 

u(5) 

0.9965 

-0.2464 

1.9916 

1.9916e-04 

0.0000 

0.9965 

-0.2464 

1.9916 

1.9916e-04 

0.0000 

0.9965 

-0.2082 

1.9920 

-0.0102 

0.0000 

0.9965 

-0.1659 

1.9927 

-0.0191 

0.0073 

0.9965 

-0.1522 

1.9931 

-0.0306 

0.0241 

x1(6) 

x2(6) 

p1(6) 

p2(6) 

u(6) 

0.9958 

-0.2462 

0.9958 

0.0000 

0.0000 

0.9958 

-0.2462 

0.9958 

0.0000 

0.0000 

0.9958 

-0.2079 

0.9958 

-0.0092 

1.2676e-04 

0.9958 

-0.1620 

0.9958 

-0.0189 

0.0000 

0.9958 

-0.1524 

0.9958 

-0.0304 

0.0000 

x1(7) 

x2(7) 

p1(7) 

p2(7) 

0.9951 

-0.2461 

0.0000 

-0.00016 

0.9951 

-0.2461 

0.0000 

0.0000 

0.9951 

-0.2555 

0.0000 

0.0000 

0.9951 

-0.2689 

0.0000 

0.0000 

0.9951 

-0.2703 

0.0000 

0.0000 

Table III. Comparison of PI for Approximate and Optimal Solutions 

S. No Description of Solution Performance Index 

1 Exact (Optimal) 8.0046 

2 Second order solution 8.0048 

3 First order solution 8.0070 

4 Zero order solution 8.0089 

5 Degenerate solution 7.9901 

6.  Conclusion  
        Time-scale separation is important in many 
applications, from PFC to low-voltage dc–dc 
converters. Separation criteria were derived for buck 
converter in both continuous-time and discrete-time 
formulations. The relationship among inductance, 
capacitance, and the inductor’s parasitic resistance 
dominated the small parameters. An experimental 
boost converter, with both resistive and constant-
power loads, demonstrated the effects of various  
design choices. A simulated PFC converter showed 
that extremely simple controllers can produce good  

line current waveforms if there is timescale 
separation. Designers may use these results in several 
ways. If a particular converter is already designed, 
then the control designer may check the criteria 
before choosing a particular control methodology. 
Alternatively, if a particular control scheme is 
desired, the power designer can make component 
choices that ensure separation. The separation criteria 
can also be used as constraints to improve a converter 
optimization problem. Future work will explore 
similar concepts for other converter topologies and 
closed-loop systems. Depending on component 
selection, there may be two timescale. In a closed-
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loop system, the input u is no longer exogenous, but 
instead is a function of the states x0 and x1, and the 
disturbance input u. The feedback system may itself 
contain extra states, and may either enhance or 
detract from timescale separation. As shown in the 
example PFC controller, though, a controller built 
entirely on the slow timescale will usually be 
effective if there is timescale separation. 
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